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COMMENT 

A note on the eigenvalues of S .  n for spin-1 in a constant 
magnetic field 

J Jayaraman and Marcus Antonius Barbosa de Oliveira 
Departamento de Fisica, CCEN, Universidade Federal da Paraiba 58.000-JoHo Pessoa, 
Paraiba, Brazil 

Received 21 March 1985 

Abstract. Exploiting the intimate connection of the problem of a charged spin-1 particle 
in a homogeneous magnetic field to that of a harmonic oscillator, we demonstrate explicitly 
that the eigenvalues of the matrix operator S .  n for spin-1 and for a constant magnetic 
field are governed by a Hermitian matrix defined on the space of the particle number n 
and spin and are thus constrained to be real for any intensity of the external magnetic 
field H ,  thereby contradicting a recent affirmation of Weaver that for n = 0, complex 
eigenvalues are present for sufficiently intense magnetic fields. We also point out the errors 
that have crept into Weaver’s analysis which have led to complex eigenvalues and as well 
to an excessive number of eigenvalues compared with that demanded by the spin degrees 
of freedom. 

In a recent paper Weaver (1978) has observed that the eigenvalue spectrum of the 
matrix operator S .  n where S,  ( i =  1 ,2 ,3 )  are the spin-1 matrices, n = p - e A =  
-iV - eA, e the charge and (A”,  A )  = (0 ,  i H ( - y ,  x, 0)), the 4-vector potential for a 
constant magnetic field If in the z direction, also includes complex values depending 
on the intensity of H. Weaver’s analysis has also led to an excessive number of 
eigenvalues, in fact three times the number demanded by the number of spin polarisa- 
tions for spin-1. As the nature (purely real or not) of the eigenvalue spectrum of S .  n 
has an important bearing on the nature of energy eigenvalues of spin-1 Hamiltonians 
(see, for instance, Weaver’s treatment (Weaver 1976) of the Sakata-Taketani (Taketani 
and Sakata 1940) Hamiltonian for spin-1 with a specific anomalous coupling with a 
constant magnetic field) and there exists a general connection between the possible 
occurrence of complex energy eigenvalues and the problem of acausality of propagation 
for spin-1 (see for instance, Krase er a1 1971, Goldman and Tsai 1971, Prabhakaran 
and Seetharaman 1973, Mathews 1974), it is pertinent to reinvestigate as to the exact 
nature of the eigenvalue spectrum of S .  n for spin-1. This is our objective in this 
comment. 

Following the essential lines of Mathews (1974) converting the problem into the 
corresponding one of the harmonic oscillator, we demonstrate explicitly in 0 2 that 
such a conversion leads to a Hermitian matrix for the corresponding eigenvalue 
problem in the space of the particle number n and spin for all n = 0, 1 , 2 , .  . . and for 
any intensity of the external magnetic field, thereby negating Weaver’s conclusions 
regarding the emergence of complex eigenvalues for n = 0. Our analysis also leads to 
the correct number of eigenvalues demanded by the three spin orientations for spin-1, 
thus rectifying an undue number of eigenvalues stemming from Weaver’s analysis. In 
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0 3 we present a comparison of our results with that of Weaver and point out the errors 
involved in Weaver’s analysis of the problem. 

We shall now proceed to prove our assertions. Starting with the n components 

7r2 = p 2  - eA2 = -i slay + fexH, vl = p1 - eA, = -i alax -feyH, 

n3 = p ,  = -i a/az, ( l a ,  b, c )  

it follows (Mathews 1974) that the operators defined by 

a = (2eH)-”*.rr+, a’ = ( 2 e ~ ) - ” ~ . r r - ,  T ,  = T ,  * iv2, (2a, b)  

together with the number operator 

N = u t a  ( 3 )  

satisfy the algebra 

[a ,  a’] -  = 1 ,  [ N, U ] -  = -U, [ N ,  a’]-  = a’ (4) 

equivalent to that of a simple harmonic oscillator and that 

[ v3, a ] -  = [ T 3 ,  a t ] -  = 0. 

By virtue of ( 5 ) ,  r3 can be replaced by its eigenvalue 

7r3 + p 3  = (2eH)”*a3, a, any real number. 

It readily follows that 

7 ~ ’  = v:+ v:+ T :  = 2eH( N + f  + a:) .  

Now, starting with the eigenvalue problem 

S -  n$= A$ 

for spin-1, the same can be written in the form 

(2eH)’”[f(S+a’+ S a ) +  S3a3]$  = A$ (9) 

where S ,  = SI *is,. 
Defining (Mathews 1974) a complete set of orthonormal states In, a, )  = In)Ola,), 

( n  = 0, 1 , 2 , .  . . , i = 1,2 ,3;  a I  = 1 ,  a2 = 0, a ,  = - l ) ,  in the space of the number operator 
N and spin, the following properties of In, a, )  follow readily. (For a fuller meaning 
of the number eigenstates In), see Mathews 1974.) 

s3ln9 a,>= a,) ,  i = 1,2,3,  a , = l ,  az=o, a3= - 1 ,  ( l o a )  

(10c) 

- 
S+l% a , )  = 0, S+ln, a * ) = J 3 n ,  a, ) ,  S+ln, a3)=J2In, 4, ( lob)  

s-I f l ,  a 1) = 4: I n, a J ,  

(n1, silt*, a,)= S n l n 2 S a , a , ,  n,, n,=0, 1 , 2 . .  . , at, a, = 1,0, - 1 .  ( 1 1 )  

S-ln, a2)=J?In, a3), S-ln, a,) = 0; 

Expanding $ of (9) in terms of the basis In, a , ) ,  we have the expansion 

where cnaz ( i  = 1,2 ,3)  are the expansion coefficients. Note that cna, for n < 0 do not 
find a place in (12) and hence cna, = 0 for n < 0. This observation is crucial for the 
ensuing analysis of the eigenvalues A. 
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Substituting (12 )  in (9) and making use of the properties ( lOa) - ( lOc)  of In, ai), we 
obtain, after a simplification, that 

Now, by virtue of the orthonormality property, ( 1  l ) ,  of In, ai), equation (13 )  results 
in a set of equations for the coefficients c,,,, c ~ , , - ~ , , ~  and c ( , - ~ ) , ~ ,  which can be written 
in the form of the following eigenvalue equation for a 3 x 3  matrix A for n = 2,3 , .  . . : 

\ 21 
A c  = (2eH)’” 

(q2 
n = 2 , 3 , .  . . , 

where c is the column vector (c,,,, c ( ~ - ~ ) , ~ ,  c ~ , , - ~ ) , ~ ) .  As A is Hermitian the eigenvalues 
A are real for any intensity of the external magnetic field H and can be obtained from 
the roots of the cubic characteristic equation 

l A - A I ( 3  X 3 ) ( = 0  ( 1 5 ~ )  

i.e. 

A - [2eH(  n - i) + p;]A - eHp3 = 0, n = 2 , 3 , .  . . , 
thus affirming that only three real eigenvalues of A occur for each n = 2 , 3 , .  . . in 
accordance with the three possible polarisations for spin- 1. 

However the cases n = 0 and n = 1 occur as special ones and  the Hermitian matrix 
A is effectively uni-dimensional and bi-dimensional respectively in view of the fact 
that c,,,, = 0 for n < 0. For  n = 0, we obtain specifically that 

AC = ( (2eH)”2a3)(co , l )  = ( c o a l ) ,  for n = 0, (16) 

(15b) 

with the only real eigenvalue being given by 

A = ( 2 e ~ ) ’ : ~ a  = p 3 .  ( 1 7 )  
For n = 1, we obtain the eigenvalue equation 

Because of Hermiticity of the 2 x 2  matrix A, the eigenvalues are real for any intensity 
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of the external magnetic field and  are given by the roots of the quadratic equation 

A’ - Ap,  - eH = 0 (19)  

i.e. 

A = + [ p ,  i ( p i  + 4 e ~ ) ” ’ I .  

Our results above testify our affirmation that only real eigenvalues occur for S .  n 

Let us now proceed to make a comparison of our results with those of Weaver and  

For his analysis of the problem Weaver (1978) starts with the Kemmer algebra 

for spin-1 for all n 3 0 and  for arbitrary intensity of the external magnetic field. 

to identify the mistakes in Weaver’s analysis. 

slsjsk + sks,st = stsJk + sksj,, i, j ,  k = 1 , 2 , 3 ,  (21)  

satisfied by the spin-1 matrices, contracts both sides of ( 2 1 )  with the product T,TJTTI‘TTI, 

multiplied from the right, utilises the familiar angular momentum commutation rela- 
tions 

’ ] I -  = i&,ikSk, i, j ,  k = 1,2,3,  (22)  

[T,, 4- = ieE,,kHL, = ( (40 ,  H ) ,  (23)  

and the commutation relations of the n components, 

so as to deduce that 

( S  n ) - ( T‘ - 2 eS, H ) ( S * n) - eHp, = 0. 

Weaver then combines (24)  with the eigenvalue equation ( 8 )  for S .  n and employs 
the substitution of the operator T’- 2eHS, by its eigenvalue 

T’ - 2 e ~ ~ ,  + 2 e ~ ( n ,  +: - m,)  + p i  = 2 e ~ [ ( n ,  - m, + 1 )  -31 +p: ,  

n , = 0 , 1 , 2  , . . . ,  
( 2 5 )  

m ,  = 21, 0,  

so as to deduce that A satisfies the cubic equation 

A 3 - { 2 e H [ ( n , - m , + l ) - $ ] + p : } A  - e H p , = O ,  

n , = 0 , 1 , 2  , . . . ,  m, = *l, 0. 

We observe that equation (26)  with n ,  and m, taking independentlyvalues 0, 1,2,. . . 
and i l ,  0 respectively is incorrect. The basic error lies in the fact that though S .  n 
commutes with r2 - 2eHS3, it does not commute separately with T’ and 2eHS, (though 
T’ and 2eHS3 commute mutually) as is evident from the following commutation 
relations 

[ S .  n, ~ ’ 3 -  = ( 2 e ~ ) ~ ’ ~ [ f ( ~ + a ’ + ~ _ a ) + ~ , a , ,  N+;+U:]-  

= - f ( 2 e ~ ) ~ ’ ’ ( ~ + a +  - S-a )  + 0, 

[ S .  n, 2 e ~ , ~ ] _  = ( 2 e ~ ) ” * [ ~ ( ~ + a ’ + ~ _ a ) + ~ , a , ,  s,]- 
= - + ( 2 e ~ ) ~ ’ ’ ( ~ + a + -  S - a )  + 0,  

[ S .  n, ~ ’ - 2 e s , H ] - = 0 ,  

[T* ,  s , H ] - = ( ~ ~ H ) [ N + ~ + u ~ ,  s,H]- =o.  
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Hence S - m, r2 and 2eHS, cannot be diagonalised simultaneously. However Weaver 
has assumed such a diagonalisation for his deduction of (26). Because of this error, 
equation (26) suggests that there is a cubic equation for independent values of n, = 
0, 1 , 2 , .  . . and m, = * l ,  0 leading thus to the same roots repeated three times more 
than the number admissible by the number of polarisations for spin-1. Note that in 
contrast to this defect of Weaver’s equation (26), our equation (15b) indeed gives the 
correct number of roots, namely three, for each n 3 2. 

In fact comparing our equation (15b) for n 2 2  with that of Weaver (26), it is clear 
that Weaver’s ( n ,  - rn, + 1 )  should be equal to our ‘ n ’  i.e. 

n = n,  - my+ 1 ( 2 8 ~ )  

and moreover the factor n,  - m, + 1 in Weaver’s equation (26) should be modified to 
assume values 2 , 3 , .  . . etc in a conjoint manner, i.e. 

n = n,  -m,+ 1 = 2 , 3 , .  . . (28b) 

For n = 0, which corresponds to Weaver’s ( n ,  = 0, rn, = l ) ,  Weaver’s procedure still 
in order to avoid untenable multiplicity of repeated roots. 

leads to a cubic equation (26) namely 

A 3  - ( p i  - eH)A - eHp3 = 0 (29) 

( A  -p3) (A2+Ap,+eH)=0  (30) 

which can be factorised into 

while our direct procedure leads to the linear equation (17) which corresponds to the 
first linear factor part of (30). We now make the important observation that the complex 
values for A in Weaver’s analysis originate exactly from the extraneous roots 

A = $ - p 3  * ( p :  - 4 e ~ ) ” ’ I  (31) 

coming from the extra quadratic factor part in (30) when 4eH > p : .  Since the case 
n = 0 occurs in our analysis as a special one, the matrix A of (14) being uni-dimensional, 
we draw the evident conclusion that Weaver’s procedure of contraction of the spin-1 
algebra (21) with the product r , r , r k  to obtain uniformly a cubic equation (24) has 
unwantonly destroyed the minimality of the characteristic equation for the matrix A 
of (16) in the corresponding eigenvalue problem in the space of the number operator 
and spin and thereby has led to the emergence of complex eigenvalues for A if 4eH > p i .  
However our analysis shows that such complex roots are not present at all. 

For the case n = 1 ,  which corresponds to Weaver’s ( n ,  = 0, m, = 0) and ( n ,  = 1 ,  m, = 
l ) ,  Weaver’s procedure has led to a cubic equation (26) for each of these two sets, 
namely 

(32) A 3  - ( e H  + p : ) A  - eHp, = 0 

( A  + p 3 ) (  A’ - p 3 A  - e H )  = 0, 

which can indeed be factorised into 

(33) 
while our direct procedure leads to the quadratic equation (19) which corresponds to 
the second quadratic factor part of (33) .  Since the case n = 1 also occurs in our analysis 
as a special one, the matrix A of (18 )  being bi-dimensional, we draw a similar conclusion 
that Weaver’s procedure of contraction to obtain the cubic equation (24) has again 
destroyed the minimality of the characteristic equation for the corresponding matrix 



3078 J Jayaraman and M A B de Oliveira 

A of (18) in the corresponding eigenvalue problem in the space of the number operator 
and spin and thereby has led to an extra root A = -p3 which however is not present 
as is clear from our analysis. 

Our work here establishing that the eigenvalue spectrum of the matrix operator 
S .  w for spin-1 is purely real for any intensity of the external constant magnetic field 
has served to remove the false impression in the recent literature (Weaver 1976, 1978) 
that this eigenvalue spectrum also includes complex values for sufficiently intense 
magnetic fields. We have also pointed out the errors that have crept into Weaver’s 
analysis (Weaver 1978) leading to such complex eigenvalues and as well to an excessive 
number of eigenvalues compared with that demanded by the three spin polarisations 
for spin-1. Our procedure which is essentially an adaptation to the problem considered 
here of the one used earlier by Mathews (1974) for determining the energy spectrum 
of a spin-1 relativistic particle with charge in a constant magnetic field, is vastly simpler 
than the procedure of Weaver (1978) contracting the spin-1 algebra with suitable 
products of T,  and moreover leads to correct results as have been analysed in this 
comment. Our procedure is more amenable for extension to the case of arbitrary spin 
than that of Weaver as even for spin-$, for example, the algebra used by Weaver (1978), 
which is equivalent (Jayaraman 1981) to the algebra of Bhabha and Madhava Rao 
(Corson 1953) is sufficiently complicated not to mention the complexity of an algebra 
for arbitrary spin! In fact the results of our current calculations easily extending the 
results of this comment for spin-1 to the case of arbitrary spin will be published 
separately. 

Partial financial support from CNPq, Brazil to JJ and a research fellowship of CAPES, 
Brazil to MABO are gratefully acknowledged. 
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